| 
       在上一讲中,我们学习了如何利用 numpy 手动搭建卷积神经网络。但在实际的图像识别中,使用 numpy 去手写 CNN 未免有些吃力不讨好。在 DNN 的学习中,我们也是在手动搭建之后利用 Tensorflow 去重新实现一遍,一来为了能够对神经网络的传播机制能够理解更加透彻,二来也是为了更加高效使用开源框架快速搭建起深度学习项目。本节就继续和大家一起学习如何利用 Tensorflow 搭建一个卷积神经网络。       我们继续以 NG 课题组提供的 sign 手势数据集为例,学习如何通过 Tensorflow 快速搭建起一个深度学习项目。数据集标签共有零到五总共 6 类标签,示例如下:   
      先对数据进行简单的预处理并查看训练集和测试集维度:- X_train = X_train_orig/255.
 
 - X_test = X_test_orig/255.
 
 - Y_train = convert_to_one_hot(Y_train_orig, 6).T
 
 - Y_test = convert_to_one_hot(Y_test_orig, 6).T
 
 - print ("number of training examples = " + str(X_train.shape[0]))
 
 - print ("number of test examples = " + str(X_test.shape[0]))
 
 - print ("X_train shape: " + str(X_train.shape))
 
 - print ("Y_train shape: " + str(Y_train.shape))
 
 - print ("X_test shape: " + str(X_test.shape))
 
 - print ("Y_test shape: " + str(Y_test.shape))
 
  复制代码 
  
      可见我们总共有 1080 张 64643 训练集图像,120 张 64643 的测试集图像,共有 6 类标签。下面我们开始搭建过程。 创建 placeholder      首先需要为训练集预测变量和目标变量创建占位符变量 placeholder ,定义创建占位符变量函数: - def create_placeholders(n_H0, n_W0, n_C0, n_y):    
 
 -     """
 
 -     Creates the placeholders for the tensorflow session.
 
  
-     Arguments:
 
 -     n_H0 -- scalar, height of an input image
 
 -     n_W0 -- scalar, width of an input image
 
 -     n_C0 -- scalar, number of channels of the input
 
 -     n_y -- scalar, number of classes
 
  
-     Returns:
 
 -     X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float"
 
 -     Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float"
 
 -     """
 
 -     X = tf.placeholder(tf.float32, shape=(None, n_H0, n_W0, n_C0), name='X')
 
 -     Y = tf.placeholder(tf.float32, shape=(None, n_y), name='Y')    
 
 -     return X, Y
 
  复制代码 
参数初始化      然后需要对滤波器权值参数进行初始化: - def initialize_parameters():    
 
 -     """
 
 -     Initializes weight parameters to build a neural network with tensorflow. 
 
 -     Returns:
 
 -     parameters -- a dictionary of tensors containing W1, W2
 
 -     """
 
  
-     tf.set_random_seed(1)                             
 
  
-     W1 = tf.get_variable("W1", [4,4,3,8], initializer = tf.contrib.layers.xavier_initializer(seed = 0))
 
 -     W2 = tf.get_variable("W2", [2,2,8,16], initializer = tf.contrib.layers.xavier_initializer(seed = 0))
 
  
-     parameters = {"W1": W1,                  
 
 -                   "W2": W2}    
 
 -     return parameters
 
  复制代码 
执行卷积网络的前向传播过程  
      前向传播过程如下所示: 
CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED 
      可见我们要搭建的是一个典型的 CNN 过程,经过两次的卷积-relu激活-最大池化,然后展开接上一个全连接层。利用 Tensorflow  搭建上述传播过程如下:
 - def forward_propagation(X, parameters):    
 
 -     """
 
 -     Implements the forward propagation for the model
 
  
-     Arguments:
 
 -     X -- input dataset placeholder, of shape (input size, number of examples)
 
 -     parameters -- python dictionary containing your parameters "W1", "W2"
 
 -                   the shapes are given in initialize_parameters
 
  
-     Returns:
 
 -     Z3 -- the output of the last LINEAR unit
 
 -     """
 
  
-     # Retrieve the parameters from the dictionary "parameters" 
 
 -     W1 = parameters['W1']
 
 -     W2 = parameters['W2']    
 
 -     # CONV2D: stride of 1, padding 'SAME'
 
 -     Z1 = tf.nn.conv2d(X,W1, strides = [1,1,1,1], padding = 'SAME')    
 
 -     # RELU
 
 -     A1 = tf.nn.relu(Z1)    
 
 -     # MAXPOOL: window 8x8, sride 8, padding 'SAME'
 
 -     P1 = tf.nn.max_pool(A1, ksize = [1,8,8,1], strides = [1,8,8,1], padding = 'SAME')    
 
 -     # CONV2D: filters W2, stride 1, padding 'SAME'
 
 -     Z2 = tf.nn.conv2d(P1,W2, strides = [1,1,1,1], padding = 'SAME')    
 
 -     # RELU
 
 -     A2 = tf.nn.relu(Z2)   
 
 -     # MAXPOOL: window 4x4, stride 4, padding 'SAME'
 
 -     P2 = tf.nn.max_pool(A2, ksize = [1,4,4,1], strides = [1,4,4,1], padding = 'SAME')    
 
 -     # FLATTEN
 
 -     P2 = tf.contrib.layers.flatten(P2)
 
  
-     Z3 = tf.contrib.layers.fully_connected(P2, 6, activation_fn = None)    
 
 -     return Z3
 
  复制代码 
计算当前损失      在 Tensorflow  中计算损失函数非常简单,一行代码即可: - <font face="微软雅黑"><span style="font-size: 16px;">def compute_cost(Z3, Y):    </span></font>
 
 - <font face="微软雅黑"><span style="font-size: 16px;">    """</span></font>
 
 - <font face="微软雅黑"><span style="font-size: 16px;">    Computes the cost</span></font>
 
 - <font face="微软雅黑"><span style="font-size: 16px;">    Arguments:</span></font>
 
 - <font face="微软雅黑"><span style="font-size: 16px;">    Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)</span></font>
 
 - <font face="微软雅黑"><span style="font-size: 16px;">    Y -- "true" labels vector placeholder, same shape as Z3</span></font>
 
  
- <font face="微软雅黑"><span style="font-size: 16px;">    Returns:</span></font>
 
 -     cost - Tensor of the cost function
 
 - <font face="微软雅黑"><span style="font-size: 16px;">    """</span></font>
 
  
- <font face="微软雅黑"><span style="font-size: 16px;">    cost = tf.reduce_mean(tf.nn.softmax_cROSs_entropy_with_logits(logits=Z3, labels=Y))    </span></font>
 
 - <font face="微软雅黑"><span style="font-size: 16px;">    return cost</span></font>
 
  复制代码 
      定义好上述过程之后,就可以封装整体的训练过程模型。可能你会问为什么没有反向传播,这里需要注意的是 Tensorflow 帮助我们自动封装好了反向传播过程,无需我们再次定义,在实际搭建过程中我们只需将前向传播的网络结构定义清楚即可。 封装模型- <span style="font-weight: normal;">def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009,
 
 -           num_epochs = 100, minibatch_size = 64, print_cost = True):    
 
 -     """
 
 -     Implements a three-layer ConvNet in Tensorflow:
 
 -     CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED
 
  
-     Arguments:
 
 -     X_train -- training set, of shape (None, 64, 64, 3)
 
 -     Y_train -- test set, of shape (None, n_y = 6)
 
 -     X_test -- training set, of shape (None, 64, 64, 3)
 
 -     Y_test -- test set, of shape (None, n_y = 6)
 
 -     learning_rate -- learning rate of the optimization
 
 -     num_epochs -- number of epochs of the optimization loop
 
 -     minibatch_size -- size of a minibatch
 
 -     print_cost -- True to print the cost every 100 epochs
 
  
-     Returns:
 
 -     train_accuracy -- real number, accuracy on the train set (X_train)
 
 -     test_accuracy -- real number, testing accuracy on the test set (X_test)
 
 -     parameters -- parameters learnt by the model. They can then be used to predict.
 
 -     """
 
  
-     ops.reset_default_graph()                         
 
 -     tf.set_random_seed(1)                             
 
 -     seed = 3                                        
 
 -     (m, n_H0, n_W0, n_C0) = X_train.shape             
 
 -     n_y = Y_train.shape[1]                            
 
 -     costs = []                                      
 
  
-     # Create Placeholders of the correct shape
 
 -     X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)   
 
 -     # Initialize parameters
 
 -     parameters = initialize_parameters()    
 
 -     # Forward propagation
 
 -     Z3 = forward_propagation(X, parameters)    
 
 -     # Cost function
 
 -     cost = compute_cost(Z3, Y)    
 
 -     # Backpropagation
 
 -     optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)    # Initialize all the variables globally
 
 -     init = tf.global_variables_initializer()    
 
 -     # Start the session to compute the tensorflow graph
 
 -     with tf.Session() as sess:        
 
 -         # Run the initialization
 
 -         sess.run(init)        
 
 -         # Do the training loop
 
 -         for epoch in range(num_epochs):
 
  
-             minibatch_cost = 0.
 
 -             num_minibatches = int(m / minibatch_size)
 
 -             seed = seed + 1
 
 -             minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)            
 
 -             for minibatch in minibatches:                
 
 -                 # Select a minibatch
 
 -                 (minibatch_X, minibatch_Y) = minibatch
 
 -                 _ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
 
 -                 minibatch_cost += temp_cost / num_minibatches            
 
 -                 # Print the cost every epoch
 
 -             if print_cost == True and epoch % 5 == 0:               
 
 -                 print ("Cost after epoch %i: %f" % (epoch, minibatch_cost))            
 
 -             if print_cost == True and epoch % 1 == 0:
 
 -                 costs.append(minibatch_cost)        
 
 -         # plot the cost
 
 -         plt.plot(np.squeeze(costs))
 
 -         plt.ylabel('cost')
 
 -         plt.xlabel('iterations (per tens)')
 
 -         plt.title("Learning rate =" + str(learning_rate))
 
 -         plt.show()        # Calculate the correct predictions
 
 -         predict_op = tf.argmax(Z3, 1)
 
 -         correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1))        
 
 -         # Calculate accuracy on the test set
 
 -         accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
 
 -         print(accuracy)
 
 -         train_accuracy = accuracy.eval({X: X_train, Y: Y_train})
 
 -         test_accuracy = accuracy.eval({X: X_test, Y: Y_test})
 
 -         print("Train Accuracy:", train_accuracy)
 
 -         print("Test Accuracy:", test_accuracy)       
 
 -          
 
 -         return train_accuracy, test_accuracy, parameters</span>
 
  复制代码 
     对训练集执行模型训练: - _, _, parameters = model(X_train, Y_train, X_test, Y_test)
 
  复制代码 
     训练迭代过程如下:  
    我们在训练集上取得了 0.67 的准确率,在测试集上的预测准确率为 0.58 ,虽然效果并不显著,模型也有待深度调优,但我们已经学会了如何用 Tensorflow  快速搭建起一个深度学习系统了。
  
 |